Host-parasitoid spatial dynamics in heterogeneous landscapes
نویسندگان
چکیده
This paper explores the effect of spatial processes in a heterogeneous environment on the dynamics of a hostparasitoid interaction. The environment consists of a lattice of favourable (habitat) and hostile (matrix) hexagonal cells, whose spatial distribution is measured by habitat proportion and spatial autocorrelation (inverse of fragmentation). At each time step, a fixed fraction of both populations disperses to the adjacent cells where it reproduces following the Nicholson-Bailey model. Aspects of the dynamics analysed include extinction, stability, cycle period and amplitude, and the spatial patterns emerging from the dynamics. We find that, depending primarily on the fraction of the host population that disperses in each generation and on the landscape geometry, five classes of spatio-temporal dynamics can be objectively distinguished: spatial chaos, spirals, metapopulation, mainland-island and spiral fragments. The first two are commonly found in theoretical studies of homogeneous landscapes. The other three are direct consequences of the heterogeneity and have strong similarities to dynamic patterns observed in real systems (e.g. extinction-recolonisation, source-sink, outbreaks, spreading waves). We discuss the processes that generate these patterns and allow the system to persist. The importance of these results is threefold: first, our model merges into a same theoretical framework dynamics commonly observed in the field that are usually modelled independently. Second, these dynamics and patterns are explained by dispersal rate and common landscape statistics, thus linking in a practical way population ecology to landscape ecology. Third, we show that the landscape geometry has a qualitative effect on the length of the cycles and, in particular, we demonstrate how very long periods can be produced by spatial processes.
منابع مشابه
Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications.
A mathematical model of the spatio-temporal dynamics of a two host, two parasitoid system is presented. There is a coupling of the four species through parasitism of both hosts by one of the parasitoids. The model comprises a system of four reaction-diffusion equations. The underlying system of ordinary differential equations, modelling the host-parasitoid population dynamics, has a unique posi...
متن کاملSynchrony and second-order spatial correlation in host parasitoid systems
1. Recent theoretical studies on population synchrony have focused on the role of dispersal, environmental correlation and density dependence in single species. Trophic interactions have received less attention. We explored how trophic interactions affect spatial synchrony. 2. We considered a host–parasitoid coupled map lattice to understand how the selforganizing spatial patterns generated by ...
متن کاملLocal variation in plant quality influences large-scale population dynamics
Spatial variation in ecological systems can arise both as a consequence of variation in the quality and availability of resources and as an emergent property of spatially structured interactions. We used a spatially explicit model to simulate populations of herbivore hosts and their parasitoids in landscapes with different levels of variance in plant patch quality and different spatial arrangem...
متن کاملPopulation dynamics and sex ratio of a parasitoid altered by fungal-infected diet of host butterfly.
Variation of host quality affects population dynamics of parasitoids, even at the landscape scale. What causes host quality to vary and the subsequent mechanisms by which parasitoid population dynamics are affected can be complex. Here, we examine the indirect interaction of a plant pathogen with a parasitoid wasp. Under laboratory conditions, parasitoids from hosts fed fungus-infected plants w...
متن کاملThe landscape genetics of infectious disease emergence and spread.
The spread of parasites is inherently a spatial process often embedded in physically complex landscapes. It is therefore not surprising that infectious disease researchers are increasingly taking a landscape genetics perspective to elucidate mechanisms underlying basic ecological processes driving infectious disease dynamics and to understand the linkage between spatially dependent population p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007